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I. INTRODUCTION

Objective analyses of meteorological variables have always de-
pended on interpolation schemes. Some methods center on local fits
of data to specific grid points, where subsequent processing removes
inconsistencies. Others attempt to fit given observations to a global
network by spectral representation of the variables. But these usually
require a priori interpolation to equally-spaced points in order to
apply the spectral integration. Flattery (1971)1, for example, used
Hough functions as a basis for his analysis in the meridional direc-
tion, while using Fourier expansions in the zonal direction and empir-
ical functions in the vertical. But he, too, required that the observed
data first be interpolated to fixed volume elements before the spectral
expansions could be determined. Once the spectral coefficients are
known, the variables can be interpolated to any desired location. With
finite difference models, this redundancy of interpolations may seem
wasteful, but it has its advantages, especially because Hough functions
are period-dependent and can be used to control initial imbalances.
For spectral models, spectral coefficients are the required initial
conditions, but, unless Hough functions are used in solving the model
equations, they must first be transformed to the correct basis. This
may be accomplished through relationships between the Hough functions
and the desired basis or through numerical integration of the values
represented at given grid points as with the finite difference models.
In either case, current analysis techniques require interpolation of

Qbserved data.zo qually-spaced points, a step which may alter the
'ﬂ

.spectral nature of the data, as pointed out by Yang and Shapiro (1973)

o
st
1. Flattery, T.:wt, 1971: Spectral models for global analysis and
forecasting, "Pkoc. Sixth AWS Tech. Exchange Conf., U. S. Naval
Academy, AWS Tgch Rep 242, 42-53,

2. Yang, C.-H. and R. Shapiro, 1973: The effects of the observa-
tional system and the method of interpolation on the computation
of spectra, J. Atmos. Sci., 30, 530-536.
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This is mainly due to the weights imposed during interpolation. Be-
cause of distance and distribution of observation points vis-a-vis
the grid points, certain data will be unevenly weighted. One would
therefore like to avoid interpolation, if at all possible, and derive
the spectral coefficients directly from the unevenly spaced data.

This work will examine some possible procedures for iccomplishing this

and the problems related to each of the methods.

II. ORTHOGONAL EXPANSIONS

Before discussing the possible methods for deriving spectral
coefficients from randomly distributed data points, it may be useful
to review some of the properties associated with expansions in ortho-

gonal bases. A set of functions §¢n(x)‘ is orthonormal over x e:@,b]

b
if/ ¢k(x)¢j(X)dx = (5)].( where 5;.( = 1 when j = k and = 0 otherwise.
a

There are certain properties associated with ¢n} with respect to an
arbitrary function f£(x) in [a,ﬁ] that are important:
1. If £f(x) is bounded and continuous at all but a finite number

of points, it may be expressed as an infinite series of the orthonormal

[++]
functions, i.e., f(x) = ;g% ai¢i(x) except at the points of discontinuity.
2, The coefficients{ai}can be derived by implementing the ortho-

b
normal property of {¢ . For any k, a_ = ¢, f(x)dx.
n k a k

3. The coefficients ai} satisfy a least-squares criterion for
b M 2
any truncation 0 < M < «, Thus, for any M, fix) - s ai¢i dx
a i=0

will be a minimum.

when dealing with a set of discrete data, integrals may have
to be approximated in order to employ orthogonal expansions. Wwhen
the data are evenly spaced, approximations to integrals can become
very close, depending on the orthonormal functions in question and

the highest degree required. Fourier transforms, for example,




T can be approximated with a great deal of precision over the interval
[-n,w] if sufficient points and their spacing are suitable for the set
of functions {cos nx} ,{sin nx }, or {einx }. If the orthogonal
functions are polynomials, such as Legendre polynomials over the inter-
val [-1,1] , transformations of polynomials can be made exact by intro-

; ducing quadrature formulae with sufficient points to resolve the com-

bined highest degrees of the Legendre polynomial and the polynomial in

question. When the data are not equally spaced, or not spaced with
regard to the particular gquadrature formula employed, the degree of

departure will depend on the approximation used.

II1. THREE METHODS

In deriving the coefficients for an orthogonal expansion when
the data points are unevenly spaced, one must first specify the cri-
teria that one seeks to satisfy before solving for the coefficients.
One may, for instance, wish that the series satisfy a least-squares
fit, or one may desire that the coefficients decrease in magnitude

with increasing wavenumber. For this study, three methods were se-

lected for comparison with a known function consisting of a finite
cosine series of K terms with the coefficients equal to (—l)n(n+l)_2
where n is the wavenumber. K is a parameter that can be varied.

The generating function, f(x), is, thus, equai to

f& (-l)J(j+l)_2 cos 2mix. There are N values of x, selected between
3=0

0 and 0.5, where N is, again, a parameter of the problem. The approx-
imating series is assumed to be truncated at M terms. The three methods

are:

1. Derivation of the coefficients by a direct least-squares

approach. M + 1 independent linear equations are derived for the coef-

. . L. N
ficients, a, by requiring that S f(xi) -

a, cos 2mMix, 2 be a
. 3 i
i=] 3

=

minimum. The coefficient matrix is symmetric with general term

N
.= 2: cos 2mjx, * cos 2mkx,. (1)
i=1 * N

Ck]
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2. Derivation of empirical orthogonal functions (EOF’s). One
chooses a set of functions {Pn} such that they satisfy the conditions
of orthonormality over the data points, i.e., ‘

N
N Y Py lx )P (x;) = c’j‘ . (2)

i=1
These functions must be recalculated for each new distribution of
data points. The nature of the functions is also arbitrary. Or-
dinarily they are chosen as polynomials with coefficients derived
by the Gram-Schmidt procedure. For purposes of comparison in this
study, the functions were chosen as linear combinations of cosines.

That is,

X
Py (x) = JZ;O by cos 2mjx. (3)

The Gram-Schmidt method is just as applicable here as with poly-~

nomials. f(x) can then be approximated by the series
M

A;% BnPn(x), where the coefficient Bk is given by virtue of the

orthonormality condition, namely

N
B, = /N 1“;‘1 £(x,) P, (x,). (4)

Combinations of the Bn's and bj's should yield the eguivalent of
the ai's in Method 1 for cross comparison.

3. Deriving the coefficients one-by-one. Were the cosine
functions truly orthogonal under a summation over the randomly-
spaced points, the coefficients could be derived singly and would
still satisfy the least-squares requirement. Because they are not
orthogonal for the unequally-spaced points, however, coefficients
derived singly will not satisfy the least-squarcs requirement for the
entire series, but they can be restricted so that they will event-
ually decrease in magnitude with increasing wavenumber. This cri-
terion dictates that low wavenumbers be made representative of the
function's large scale, while high wavenumbers represent the unfil-
tered smaller waves. To achieve this, one can simply sequentially

subtract the longer waves leaving only the higher wavenumbers. A




particular wavenumber is then filtered out by multiplication by the
orthonormal function of the desired wavelength and adding over all
points. Were the points correctly spaced or the orthonormal function
truly orthonormal, the filter would work perfectly. Because of uneven
spacing, however, the method captures more waves than intended. There
is a guarantee, however, that the coefficients of higher order wave-
number will ultimately represent waves of decreasing length. This
aspect has been termed the "finality" condition by Holmstrom (1963)3
who imposed it on the creation of his EOF's for analyzing geopotential
heights. It, in effect, guarantees convergence of the series through-

out the interval.

Accordingly, the first order coefficient, a should represent

OI
the mean of the function, 1/N ﬁ% f(xi). The second coefficient, al,
i=1

represents the departure from the mean filtered by cos 21rxi and nor-

N
malized by 2: cos2 2nxi.
i=1
N N 5 -1
Thus a, = Egi f(xi) - ag] cos 2nxi Egi cos 2Trxi . This process

is continued so that any coefficient is given by

-1

N k-1 N
. 2
= - m S kil -
a, igl f(xi) jéo aj cos 2 in cos 2'rrkxi iél cos 2 kxi (5)

Iv. TESTS

A series of tests was made with regards to distribution, number,
and error. The tests can best be understood by a description of the

label connected with any given run. A typical run was described by a

3. Holmstrom, I., 1963: On a method for parametric representation
of the state of the atmosphere, Tellus, 15, 127-149.




T performed uniformly, & Z U, or by staggering the data points, 4 £ S,

label which looked like d, N =n, M =m, K = k, R. Capital letters
are fixed, lower case letters are variable.

d - Distribution. Three types of distribution were tested.
Evenly spaced data points, 4@ = E, implies that the N data points were
placed in positions which would enable fast Fourier transforms, i.e.,

xj = (23 —l)(4N)-1, j=1,..... ,N. Random placing of the data was

———
so that 90 percent of the points lay in the interval 0 £ x < 0.25
and 10 percent in the remaining half.

N,M,K - Number. N refers to the number of data points (n),
assumed known. M refers to the truncation limit (m) on the approxi-
mating series, while K refers to the upper limit (k) on the generat-
ing function. The default values for m and k are 15, when not spec-
ified on the label.

R - Random Error. When the label "R" appears, "observational”
errors were added to the data before the coefficients were determined.
The error, €, was uniform random and of magnitude £ 0.0l (as compared

with a maximum coefficient magnitude of 1.0).

Thus a label U, N = 50, R refers to a test where 50 data points
were uniformly distributed between 0 and 0.5, 15 terms were used for
both the generating and approximating series, and an error of at most
*+0.01 was added to each data point. A label S, N = 50, M = 10 implies
a staggered distribution of the 50 points, 15 terms in the generating

function and only 10 terms in the approximating series.

v. RESULTS

Although Methods 1 and 2 differ procedurally, they yield the
same results. The reason for this is that the EOF's are linear com-
binations and of the same degree as the cosine series. Because of
this, they both span the same vector space and will give the same
approximation to any function. In general we can prove the following
theorem:

Given ‘- wo sets of functions {Qn(x)} and {¢n(x)} , integrable

[ r > = n
& a,F nere Q (x) égb by $g(x), by 4 0, and also a set of




b M 2
coefficients {Bn} such thatJ/. £(x) - 2: BnQn(x) dx is a minimum
a n=0

for a given integrable function f(x), then the coefficients ian },

M M
where E: an¢n(x) = 2: BnQn(x) are exactly those which will minimize
n=0 n=0
b M 2
f f(x) - Z and)n(x) ax.
a n=0

Proof: Since the coefficients Bj, j =0,...,M, minimize the
integral of the squared difference, we have by differentiation with

respect to each Bk the condition./rb £(x) - ﬁi Bij(x) Qk(x)dx = 0,

a =0
k=0,...... M. Substituting for Q. and Q,, we dget
k |
b M Kk
“£~ f(x) - }g% aj¢j(x) ég% bgk¢2(x)dx =0 for k = 0,....,M. Since

blk % 0, we can eliminate each term of the series sequentially by

starting with k = 0 and working up to k = M. This leaves us with the
b M
conditiond/‘ £f(x) -~ 2: a.¢,(x) |0, (x)dx = 0. But this is simply the
a =0 33
necessary condition for proving that the coefficients aj, 3 =0,.....,M,
minimize the squared difference between the f(x) and the series in terms

of the ¢j's.

Because the two methods differ computationally, however, they
will yield different results when approximate solutions are either
very close to the true solution or very far. Table 1 exemplifies
this feature, in giving the root mean square (rms) error between coef-
ficients of the approximating series and the true coefficients for
equally spaced points. Without the addition of random error to the
data, rms errors for all three methods are within the noise level of
the computer algorithms. The addition of random error to the data
affects all methods equally; rms errors for fewer points are only
slightly greater than for N = 30, Truncation to M = 10 has no detri-

mental effect even in the face of random error.

10
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TABLE 1.

form Distribution.

RMS Differences between Coefficients of the Generat-
ing Series and the Coefficients of the Approximating Series for Uni-

Run Method 1 Method 2 Method 3
E,N=30 2.1543x107%%  2.5077x107*%  1.9510%107 14
E,N=16 2.0282x10° 1% 2.5152x1071%  1.4050x10714
E,N=30,M=10 2.5182x10 1% 2.6247x107%%  2.3845x10714
E,N=16,M=10 1.7838x10° 1% 2.1707x107'%  1.6992x10714
E,N=16,M=8 1.8979x10 1% 2.4168x1071?  1.8973x107M4
E,N=30,R 1.1936x107° 1.1936x107> 1.1936x107°
E,N=30,M=10,R 1.2822x10° 1.2822x10"° 1.2822x107°

Figures la-b show the eff-ct of number on U and S distributions,
respectively, for all three methods. Methods 1 and 2 do not coincide
for these cases because they are still within the noise range of the
algorithm, even for S distribution where the rms error rises rapidly
with decreasing N. It is obvious from these figures that while
Methods 1 and 2 are better than Method 3 for both distributions, at
least for N = 30, they become highly unreliable for decreasing N.
Method 3 is barely affected by number and maintains approximately
the same estimates of coefficients even when N approaches the criti-
cal minimum of 15 points for resolving the 15 cosine waves. Note
also that with U distribution, increasing the number of points beyond
30 has very little impact on error for any of the methods. For S
distributions, however, there is a distinct effect caused by vary-

ing the number of points.

11
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mating series and the generating series as a function of number
of data points for all three methods and for U distribution.
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S,N=n

Figure 1lb. RMS difference between coefficients of the approxi-
mating series and the generating series as a function of number
of data points for all three methods and for S distribution.
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Figures 2a-b depict the effects of truncation (M = 10) on the
ms error. Here, error levels are substantially higher than for

M = 15, 0Oddly, the rms error for all methods increases drastically
for N + 15 for U distribution, while for S distribution, only Methods

1 and 2 cause a precipitous rise in rms error as N drops.

Table 2 lists the rms errors for runs including the addition
of random error to the data. Method 3 fares much better here than
in previous comparisons. In general, Methods 1 and 2 seem superior
in cases when the ratio of N/M is high, while Method 3 prevails when
the ratio is low, or when the S distribution is encountered. 1In
fact, for S distribution and N = 16, Methods 1 and 2 fail to achieve

credible approximations of the coefficients.

TABLE 2. RMS Differences between Coefficients of the Generat-
ing Series and the Approximating Series for Runs Involving the Addi-
tion of Random Error to the Data (Other than E Distribution Portrayed

in Table 1).

14

Run Method 1 Method 2 Method 3
U,N=45,R 1.9280x10 "> 1.9280x10° 6.9638x10 >
U,N=16,R 5.4372 5.4372 2.0119x10" 2
S,N=45,R 7.1964x10 > 7.1964x10" " 4.5070x10" >
S,N=16,R Failed Failed 3,8026x10" 2
U,N=30,M=10,R 3.1441x10" 3 3.1441x107° 8.7045x10"°
$,N=20,M=10,R 8.0520x10" > 8.0520x10> 4.2164x1072
$,N=16,K=20,R Failed Failed 3.8103x10 2

Tk dcmn
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Figure 2a. RMS difference between coefficients of the approxi-

mating series and the generating series as a function of number
M

of data points for all three methods and for U distribution.

is truncated at wavenumber 10,
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The spectra shown in Figures 3 - 5 demonstrate the effect, by
wavenumber, of the various errors, Fiqure 3 depicts the spectra ot
the denerating functions along with the approximating tunction for
E, N 30, M - 10, R, Ry Table |, all methods coincide for this
case and so only one approximat ing spectrum is depicted.  Notice
that the ottect ot truncation and the additton ot roaadom error seem
only to perturb the high wavenumbers (k 2 7)., Figures da-¢ show
the effects of random distribution in comparison with Figure 3. 1In
Figure 4a, ditterences in the methods appear tor lower wavenumbers,
but , despite the presence of truncation at M - 10, departures trom
true values are not systematic or severe, ‘The addition ot random
error to the data does not result in any major spectral changes as
seen in Figure dbo The reduction of data points, however, as de-
picted by Filaure 4¢, has a pronounced ettfect on the spectra, result-
ing in a substantaial underest imate of values tor wavenumbers higher
than 5,  Figures Sa-o are similar to Figures Jda-¢, except that they
are tor @ distribution,  Here the departures are more scevere than

tor U distribution, while, agqain, the addition of random orror has

very little impact. The reduction ot data points, however, does
not result in a systematic undoiest imate ot the spoctra as with U
distribution. 1t anything, there seems to be an overestimation ot
the spectral coetficients in this case, It is also important to
notice that the departure ot Method 3 is more pronounced tor higher
wavenumbetrs than Methads 1 oand 0, but that they are both as accur-

ate tor lower wavenumbers,

Depiction ot the function itself is found in Figures o and 7.
Figures va-b are tor Methods | and 2 and Method 31, respectively,
tor N - 0, M 10, Both U and & distributions are shown on each
araph.  Here, one can clearly see the superionity ot Methods 1 and
2 over Mcthod 1 as tar as accuracy is concerned. when N drops to
16 as in Figqures 7a-b, this superiority, especially with reagards to

the 8 distribution, is non-existent., Notice that Methods 1 and 2

still guarantee a least-squaves tit to the data. Even tor 8, N = lg,
M 10 (Figure 70) where very larae Jdiscrepancies appear, the approx-
1
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Figqure 3. Spectra of the approximating series for all

three methods and for the generating series for E,
N = 30, M = 10, R.
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Figure 4a. Spectra for the generating series, Methods
1 and 2, and Method 3 for U, N = 30, M = 10.
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Figure 4db. Spactra for the generating series, Methods
1 and 2, and Method 3 for U, N = 30, M = 10, R.
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Figure 4c. Spectra for the generating series, Methods
1 and 2, and Method 3 for U, N = 16, M = 10,
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Figure 5a. Spectra for the generating series, Methods
1 and 2, and Method 3 for S, N = 30, M = 10,
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Figure 5b. Spectra for the generating series, Methods
1 and 2, and Method 3 for S, N = 30, M = 10, R.
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Figure 5c¢. Spectra for the generating series, Methods
1 and 2, and Method 3 for S, N = 16, M = 10.
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Figure 7a. Values of the generating series and the approximating
series for both U and S distribution, N = 16, M = 10, as a function

of x for Methods 1 and 2.
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imating function still minimizes the squared error with the given
data. Apparently, however, the distribution of the data points left
out the interval between, roughly, 0.25 and 0.45, allowing the func-
tion to roam freely between these values. Method 3 may not fit the
data very well in places but, because of its finality condition, pre-

vents runaway errors.

VI. SUMMARY AND CONCLUSION

Three methods have been studied which yield coefficients of
a finite cosine series in an interval, given a sampling of data in
that interval. The first method directly solved the least-squares
condition by matrix inversion. The second involved the calculation
of EOF's, while the third imposed the condition of finality and the
coefficients were derived singly. It was shown that since the EOF's
were specified as linear combinations of cosines, the first two meth-

ods would yield the same results,

The following conclusions can be drawn from examining the rms
errors and the spectra of the various approximating series produced
by the methods:

1. Number is less of a factor than distribution. Even when
the number of points approaches the critical value, if they are
equally spaced, they will result in perfect approximation. Uniformly
distributed data will generally result in closer approximation than
non-uniformly distributed data.

2. Method 3 does not provide as close a fit as Methods 1 and 2
but does not result in divergent behavior for poorly distributed data.
The divergent behavior of Methods 1 and 2 is due to the fit of the
series with the data given, which allows significant degrees of free-
dom for the intervals not covered by data. This is also related to
the "ill-conditioned" nature of the coefficient matrix which must be
inverted in Method 1, as will be discussed below.

3. The addition of random error to the data has very little

impact on the results. At least for the magnitude of error tested,

p . . -3




the deviations from unperturbed cases are mimimal. Since the errors
are uniformly random, the averaging process over the data points acts
as a filter and diminishes the effect of these observation errors.

4. Truncation error has a nominal effect on the coefficients
especially in the high wavenumber regime. In many cases, when data
points are few, it is preferable to truncate rather than to go to
higher wavenumbers. This is because solution of Methods 1 and 2
makes the wavenumbers interdependent, so that the truncation is “felt”
in all coefficients. 1In Method 3, however, there is no danger of this

happening and the truncation limit is arbitrary.

From analysis of the spectra in Figures 4 and 5, one notes that
Method 3, although designed to depict less of the function for increas-
ing wavenumber, does not result in monotonically decreasing coefficients
with increasing wavenumber. The reason for this, as stated above, is
that, because of non-~uniform distribution, the approximation of indi-
vidual coefficients is not precise. Thus when subtraction of these
waves from the original data is performed, the remainder will not be
accurate, leading to more impreciseness. The method assures, however,
that the approximation will eventually catch up and adjust itself to

the data, without diverging.

One may question, however, whether numerical integration is per-
haps superior to Method 3 for approximating the coefficients. That

is, one may attempt to derive a, by numerically integrating

k
.5

2 f(x) cos 2mkx dx by quadrature formulae. Unless the data points
0

are correctly spaced for the relevant quadrature formula, numerical

integration will involve unwittingly weighting certain data points.

This has the same effect as interpolation of data points to fixed grid

points before integration. As pointed out previously, such a pro-

cedure could affect the spectral nature of the data. As an example,

Table 3 indicates the rms differences between the coefficients of the

generating function and coefficients derived from the trapezoidal and

midpoint rule of integration. These results may be compared with

those found in Tables 1 and 2 and with Figures 1 and 2. The trapezoi-
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dal rule, being a closed Newton-Cotes quadrature formula, required

inserting the end values of the generating function for each run.

Note that for E distribution the midpoint quadrature is exact, while

the trapezoidal rule is approximate,

In general, rms differences

for numerical integration are significantly higher than for Method

3 (in some cases by an order of magnitude).

The sensitivity to num-

ber and distribution of data points is also obvious, when one notes

the significant increase in error for S distribution as opposed to

U distribution and the jump in error caused by a reduction in number.

Method 3, which works on wave space rather than physical space, is

better suited to represent the spectral nature of the particular

function for these distributions, while numerical inteqration by

concentrating on physical space is not as efficient.

TABLE 3.

RMS Differences between Coefficients of the Generat-

ing Series and the Approximeting Series for Runs Involving Trape-
zoidal and Mid-Point Quadrature Integrations.

Run
E,N=30
E,N=30, M=10
U, N=30
U, N=100, M=10
U, N=30, M=10
U, N=30, M=10, R
. U, N=16, M=10
S, N=100, M=10
S, N=30, M=10
S, N=16

Trapezoidal

3.39793x10 2

3.27108x10" 2

8.3108x10 >

1.13156x10 2

5.55853x10 >

5.57984x10 >

1.25008x10 "}

1
1

2.96793x10
3.92814x10

4.91530x10" !

31

Mid-point

2.152034x10 "

2.551610x10

7.64284x10" 2

3.97745x10"°

3.44025x10™ 2

3.44947x10 "2

1
1

1.07500x10
2.96183x10

4.07799x10" "

5.23083x10"

14

14
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Methods 1 and 2 are apparently not based on physical spacing
either but on finding a function which approaches most closely the
available data. As such, the spacing affects the choice of coeffi-
cients by prescribing where along the x~axis the approximating func-
tion must approach the true solution. But the function is free to
roam through other values of x where data are not available. The
matrix of Method 1 can sometimes serve as an indicator as to when
Methods 1 and 2 will fail. By examining the ratio of the eigenvalues
of the coefficient matrix in the least-squares problem, one can ascer-
tain the amount of distortion involved in the mapping of the solution
vector to the given vector containing the data points. If the ratio
of eigenvalues is very large, it is an indication that a great deal of
magnification and diminution will be present in the mapping, leading to
misrepresentation. Unfortunately, this is not a necessary condition
for the solution to diverge from the true solution. In the
problem considered here, the matrix is real symmetric with entries
ckj given by (l1). The eigenvalues are therefore always real. The
ideal ratio of extreme eigenvalues Y (i.e., for E distribution) is
2, because the elements of the matrix are simply ckj = Gi N/2, ex- 14
cept when k = j = 0, where coo = N. For §, N =16, y = -2,126 x 10" 7,
a clear indication as to why the method failed for that run. Yet
for U, N = 30, where the fit was very close (according to rms differ-
ences in the coefficients), y = 1.681 x 102, but for U, N = 100,

M = 10, where the fit was close, but not as close as U, N = 30, Y =
3.343. For U, N = 30, M = 10, R, where the fit is only slightly
worse than U, N = 100, M = 10, y = 5.442, S, N= 30, M = 10, R
yields results which are only slightly worse than for the U distri-
bution, but its y = 9.463 x 102. Thus, other criteria must be sought
to enable evaluation of Methods 1 and 2 and their applicability,

In meteorological analysis one often encounters areas of sparse
data similar to the S distribution in this study. Results here in-
dicate that attempts to analyze data according to Methods 1 and 2
may produce runaway errors in regions of no coverage. Method 3, on
the other hand, while being a safe method, could lead to serious in-
accuracies. It may be best to combine methods by allowing Method 3

to provide a first quess in sparse areas which can then be used in
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conjunction with the given data in data-dense areas to provide analyses
according to Methods 1 and 2. The fact that Methods 1 and 2 will both
provide similar coefficients will allow a pragmatic evaluation of the
employability of each method for any given problem. For numerous coeffi-
cients the inversion of large matrices may be alleviated by employing
Method 2. 1In other cases a simple matrix inversion may prove easier than
the two-step EOF method.

This study was limited to one dimension. The introduction of a
second dimension complicates the application of the three methods.
If points are randomly distributed in two-dimensional space, it is not
obvious how one can represent a sum of functions to approximate the data.
With evenly distributed data, each dimension is considered separately,
but this is not feasible if points are not aligned in any specific di-
rection. Future research will attempt to solve these fundamental prob-

lems and extend the results obtained here to higher dimensions.
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